
The Generation Game: An im-
age processing system for pro-
cedural game generation using
a convolutional deep learning
architecture
Nathan Butt
16013327

University of the West of England

May 29, 2019

I mage recognition is a foundational technology
whose application can be witnessed in many

games as well as across other fields such as com-
puter graphics. In recent years with the advent of
deep learning, convolutional neural networks are
being used as a potential solution to many image
recognition problems due to the potential accuracy
and flexibility. One area where these could be ap-
plied is in procedural generation where pictures
could be used to create levels or game mechan-
ics. Here we propose a possible involving the use
of convolutional neural networks in order to gener-
ate elements of a game based on a set of predefined
parameters.

1 Introduction

There are numerous examples of image recognition
being used in games. One example is EyeToy Play
3 (SIE, 2005) which contained a feature known as
“RecogCam” where players could use select images in
order to access secret content within the game. Whilst
an enhancement to the game, the system was limited
in that is required a pre-set range of images, limiting
gameplay potential and requiring more space to store
the required image data.

Machine learning is a family of algorithms that has
seen widespread development and adoption in recent
decades, particularly with regards to artificial neural
networks, which are being applied in numerous sectors
to solve a wide variety of problems including image
recognition. The primary strength of these algorithms
is the ability to learn tasks from training data as the
name implies. This makes them very adaptable to the
needs of the individual providing the correct data and
architecture is used. In regards to examples such as
the EyeToy, this would both solve the data problem
as well as open gameplay opportunities as the game
could contain procedural elements based on the image
presented.
This report seeks to evaluate this possibility via cre-

ating a simple game which allows individuals to se-
lect classes of random images and generate a game
which can then be played. Image processing will be
performed via a neural network which will be trained
using a selection of images where the results of said
network are used to generate the game. This game
will be evaluated on both the success of the task and
the performance of the image recognition.
Given the need to interoperate images, we can con-

sider this a multi-class image classification problem.
Therefore the neural network for this system will utilise
a convolutional neural network architecture (CNN).



The Generation Game: An image processing system for procedural game generation using a convolutional deep
learning architecture

Figure 1: An Example of the recogCam cards used in the image
recognition system (SIE, 2005)

2 Related Work

CNNs were first presented by Lecun et al., 1998. and
are a deep-learning neural network structure designed
for image analysis via the use of convolutional filtering.
This architecture introduces a number of new layer
constructions and operations to neural networks in or-
der to facilitate this. Additionally, it has resulted in
swathes of new method pertaining to loss and activa-
tion functions.

2.1 Convolutions and Convolutional
Layers

Fundamental to a CNN is the concept of convolutions
which are resulting integral functions created as a prod-
uct of two other functions. Given the resulting function
is an integral it defines the area under the resulting
curve. This function can also be defined discreetly
resulting in equation 1 (Smith, 1997).

(f × g)[n] =

+∞∑
m=−∞

f [m]g[n−m] (1)

This function is optimal for images can be repre-
sented in functional definition via the use of matrices
which can then be substituted in to allow for the ap-
plication of various functions ranging from Gaussian
curves to edge detection allowing either the image to
be edited or features to be extracted from the image
for training (Lecun et al., 1998).

Figure 2: An example image convolutional operation.
(Convolution Matrix)

Application of convolutions to images is performed
via a convolutional matrix or image kernel which is
an N x N matrix defining a select filtering operation
as demonstrated in Figure 2. The image can also be
thought of as a width*height matrix but given the dif-
ference in magnitude the image kernel is applied across
the image with a striding operation performed across
the image. The resulting substitution can be expressed
as follows.

(f × g)[x, y] =

a∑
s=−a

b∑
t=−b

ω[s, t]f [x− s, y − t] (2)

Convolutional layers perform this exact operation
with the image kernel portion ω(s, t) representing
the weights of the layers. These are adjusted during
the networks training process which in turn adjusts
the features extracted from the image allowing the
model to be trained. Convolutional layers are com-
prised of a node count that equates to colourDepth ∗
imageWidth ∗ imageHeight ∗ imageCount represent-
ing all aspects of the image including the seperate
channels.
Additionally, the image weight matrices must be de-

fined are defined via a 2D vector along with a stride
value which determines the movement of the image
kernel across the collection of image nodes.

Figure 3: A visual summery of a nodes composition
(Covolutional Neural Networks)

Page 2 of 7



The Generation Game: An image processing system for procedural game generation using a convolutional deep
learning architecture

Figure 4: A visualisation of a convolutional layer operation
(Cornelisse and Cornelisse, 2018)

2.2 Additional Layers

Layers are collections of nodes designed to abstract as-
pects of the neural networks problems. In CNNs there
exists a number of unique layer constructs pertaining
to image processing given the nature of the data. Addi-
tionally, there are several other general layer constructs
that can be used to improve accuracy.
The nature of convolutions results inevitably in multi-

dimensional data which cannot be directly mapped to a
list of categories which is a single dimensional dataset.
This is addressed via a flatten layer which is a fully
connected layer where all nodes in the previous layer
are connected directly to a set of nodes, resulting in
a collection of 1D values. This a CNN classifier this is
used to retrieve output from the network or to allow
for use of fully connected layers.

Figure 5: A basic visulisation of a flatten layer. (Rubikscode,
2018)

One issue with networks is overfitting which can
result in poor performance given generic data, one
cause is due to what is known as sampling noise re-
sulting from limited datasets. A layer construct known

as dropout addresses this by deactivating a specified
proportion of nodes as described in 3 (Srivastava et al.,
2014). This is a highly effective strategy resulting in
major decreases in error.

Figure 6: A dropout layer compared with a standard hidden
layer. (Srivastava et al., 2014)

rl = Bernoulli(p)

yl+1
i = rl ∗ f(x)

x = inputFromConnectedLayers

(3)

Pooling layers analyse various elements of a convo-
lutional layers via a defined grid filter which fetches
values from the convolutional nodes and retrieves a
value according to a select “Pooling operation”(Gu et
al., 2018). The two primary types of pooling are max
pooling where the highest value within the grid filter is
retrieved and subsample pooling. These function simi-
lar to dropout layers in that they are designed to reduce
error from over-fitting from convolutional layers.

Figure 7: A illustration of a pooling layer utalising max-pool.
(Covolutional Neural Networks)

CNNs tend to utilise the max pooling operation as it
has been demonstrated to result in lower error rates
(Scherer, Müller, and Behnke, 2010).

2.3 Nodes and Activations

Within a CNN, nodes function identically to nodes in a
standard neural network where nodes outputs values
after being subject to activation. Activations are per-
formed on a weighted sum of all inputs to the node and
can be defined by equation 4. Activation functions are
arbitrary defined which also extends to the function
ranges.

Page 3 of 7



The Generation Game: An image processing system for procedural game generation using a convolutional deep
learning architecture

f(

Nodes(l−1)∑
i=0

wl−1
i xl−1i + bl−1) (4)

The most basic activation is a linear/identity activa-
tion where input values are passed through with no
alteration (f(x) = x) whose application in a network
is according to how optimal the function is for the
networks tasks. Given the nature of the network, the
activations most adapt are those used for convolutional
operations and classification.
Classification problems commonly utilise the sigmoid

or logistic activation function. This function produces
an s shaped curve with an output range of 0-1 which
can be seen in the equation below. Sigmoid activations
are ideal for classification due to the function range.
The range maps to probability values correctly, com-
bined with the function having differentials and it’s
a very suitable candidate for use in artificial neural
networks.

f(x) =
1

1 + e−x
(5)

Figure 8: A basic description and demonstration of sigmoid
(Sigmoid function 2019)

However when performing multiple category classifi-
cations this activation function performs poorly as this
is a binary function where activations may total above
1, meaning it is only suitable for activation between
two categories. Therefore multi-classification functions
utilise an activation called softmax activation (Duan
et al., 2003). Softmax activation is a mathematical
extension of sigmoid where binary classifications are
performed across all categories and combined together,
making it suitable for use in multiple classification sce-
narios.

fi(x) =
exi∑J
j=0 e

xj

(6)

Convolutional neural networks utilise a specialised
family of activation functions known as Rectified linear
unit (ReLU) activations. There are several variants of

ReLU, however the fundamental version is defined by
equation 2.3 (Nair and Hinton, 2010).

f(x) =

{
0 if x <= 0

x otherwise

ReLU activations have been demonstrated to be
highly effective in image classification (Nair and Hin-
ton, 2010) hence their widespread support and use.

2.4 Loss and training

Training in mathematical terms can be interoperated as
an optimisation operation with all predictions existing
in a search space. Training in a CNN is identical to
existing feed-forward neural networks (Lecun et al.,
1998), comprised of several stage:

• Calculation of loss/cost
• Backpropogation of error
• Optimisation

Loss or a cost function (C) is a method for deter-
mine the error of a network of which there are several
according to the network architecture. Multi-category
Classification networks commonly utilise multicategor-
ical cross-entropy cost. Cross-entropy is also known as
log loss and utilises logarithms to estimate error. This
function is defined by equation 7 (Lin et al., 2017)
(Loss Functions)

C(pt) = −
M∑
c=1

α log pt (7)

Cross entropy can also be modified according to
whether or not the output categories are one hot cat-
egories where outputs can have multiple properties.
In the case of single category output sparse categor-
ical optimisation can be used (20 – check for better
source).
After calculating loss the contribution to loss must

be determined and in all cases this is performed via
backpropagation. Backpropogation is a delta function
which distributes error throughout the neural network
which is later used as part of optimisation. The goal of
this algorithm at each stage is to find the partial deriva-
tives of ∂Cx/∂w and ∂C/∂b (Nielsen, 2018). These
differentials are calculated via application of the chain
rule as shown in equation 9.

dy

dx
=
du

dx
× dy

du
(8)

This application results in the derivative allowing
the gradient to be quantified and then subsequently
carried through to earlier nodes.

∂Cx

∂wx
= ainδout (9)

Page 4 of 7



The Generation Game: An image processing system for procedural game generation using a convolutional deep
learning architecture

This proceeds recursively through the network in-
forming the optimiser the gradient of error, allowing
gradient descent to proceed.
Optimisation represents the core of the training pro-

cess via adjusting the weights in the neural network
in order to locate minimum costs which in a neural
networks case equates to greater accuracy. In neu-
ral networks this is completed via gradient descent
where the differential is computed that represents a
movement in the search space from the initial cost
function. There are several optimisers which are de-
rived from the same principle such as RMSprop, Ada-
Grad. However one approach now commonly used is
the Adam optimiser as it has been demonstrated to
correct loss significantly more efficiently than other
optimisers (Kingma and Ba, 2014). Optimisers contain
a number of hyper-parameters, the core of them being
the learning rate which is a multiplier that determines
the rate of ajustment to weights.

3 Method

This system was designed with two components, the
game and the neural network module. Games will be
constructed from a list of predefined categories with
these categories being used during the training phase
to train a predefined neural network how to recognise
images. During runtime the game will pass selected
images to the neural network module which will return
a prediction. This prediction is then used to construct
the game.

Figure 9: The architecture of the system.

Categories are defined within a text file and are
comprised of a list of strings representing each category.
This list is identical for both the game and the NN and
is used for the respective data structures in each.

3.1 Game

The game was created using the Unity3D game engine.
The game several scripts to both interface with the NN
and create the games. The games were defined by two
feature categories – The character and the map, this
informed the list which was comprised of five items.
Image input in the game comes from two sources

either via loading directly from the user’s filesystem or
from a local webcam where the user can take a picture.
These files are stored in the games local filesystem

Class Feature Category
Anime

CharactersScifi
Skeletons
City MapsForest

where piping to the neural networking module is used
utilising the Process functionality in Unity. Upon the
neural networkingmodule issuing a prediction it is then
retrieved in the form of an array where the probability
of each category is recorded.
These predictions are scanned by feature category

with the highest prediction for an item in a feature
category being used. Once recognised the game will
then be configured according to the selected categories.
So if a human character for example is shown then you
would play as a human.

3.2 Neural Network module

The NN module was created using Google’s Tensorflow
API utilising the Keras subsystem within a collection
of Python Scripts. Tensorflow incorporates all of the
NN components and principles as discussed in related
work in an assemble manner, making it ideal for this
purpose (Goldsborough, 2016).
The neural network module is comprised of two

individual scripts, a training script and a prediction
script. All input data to the neural network is required
to be formatted in the form of a 4D tensor or multi-
dimensional data structure. The loading of data and
processing into a tensor is performed by a DataLoader
script.
The training script defines the neural networking

model and performs neural network optimisation re-
sulting in an output model via the SaveModel func-
tionality within Tensorflow. The prediction script loads
the corresponding model performing and outputting a
prediction. These scripts were created according to rec-
ommendations from the Tensorflow Documentation.

4 Architecture Design

Figure 10: A visual summery of my Neural network architec-
ture

The network architecture was a custom design based
on the existing research performed. This architecture is
comprised of three convolutional layers with each con-
volutional layer followed by a pooling layers allowing

Page 5 of 7



The Generation Game: An image processing system for procedural game generation using a convolutional deep
learning architecture

for feature sampling and performing down sampling on
the data. This is then followed by a dropout layer and
a flatten layer which is designed to reduce overfitting
from feature maps for category predication.
This is performed by two standard fully connected

layers interconnected with flatten layers to allow for
output to a select range of categories. It’s this output
that will then be fed to the game which is outputted
in the form of a standard out.
All convolutional layers along with hidden nodes use

ReLU activation with the final output layer utilising
softmax activation given there recognised effectiveness
for both convolutions and multi-class output. Given
the stated performance the network was optimised
using the Adam optimiser with a learning rate (Lr) set
at 0.01 in order to avoid excessive gradient descent
preventing overfitting and local minimums. The loss
function given the need for multi category classification
is a sparse cross entropy function.

5 Evaluation

5.1 Parameters

The primary focus in this case was the NN system as
its predictions would have an impact on the behaviour
of the main game. As this was going to be used for the
game the network was trained using an identical set
of parameters:

• 100 epochs
• The already mentioned set of categories
• A training set of 5000 images

The network was evaluated on both loss and accu-
racy metrics. Five individual training sessions were
performed in order to test for any anomalies in the
network.

6 Results

The networks approached proved to be very effective
in the five tests that were performed. Convergence in
both accuracy and loss was fairly quick with accuracy
approaching above 90%within the allotted set of epoch.
This was also true for minimisation of the loss functions
which showed a similar fast rate of convergence as
demonstrated in Figures 11 and 12.
However given these results it is possible that there

may be an issue of premature convergence. Despite
these issues this approach of interfacing between ap-
plications was fully functional and resulted in a stable
working system.

7 Conclusion

In conclusion a successful implementation of a proce-
dural game that is capable of recognising images and

Figure 11: Accuracy across the 100-epoch 5-run training

Figure 12: Loss across the 100-epoch 5-run testing

generating a subsequent game. The neural network ar-
chitecture in many respects proved effective with a fast
convergence rate. However this approach whilst effec-
tive could be enhanced with some additional changes
to the activation function. As was found in research
if multi-class crossentropy had been used its likley it
would have resulted in more nuanced predictions as
the loss function used was designed more for one-hot
predictions where one preiction is chosen.

Page 6 of 7



The Generation Game: An image processing system for procedural game generation using a convolutional deep
learning architecture

Bibliography

Cornelisse, Daphne and Daphne Cornelisse (2018).
An intuitive guide to Convolutional Neural Networks.
url: https://medium.freecodecamp.org/an-
intuitive- guide- to- convolutional- neural-
networks-260c2de0a050.

Covolutional Neural Networks. url: http://cs231n.
github.io/convolutional-networks/.

Duan, Kaibo et al. (2003). “Multi-category Classifica-
tion by Soft-max Combination of Binary Classifiers”.
In: Proceedings of the 4th International Conference on
Multiple Classifier Systems. MCS’03. Guildford, UK:
Springer-Verlag, pp. 125–134. isbn: 3-540-40369-
8. url: http://dl.acm.org/citation.cfm?id=
1764295.1764312.

GIMP. Convolution Matrix. url: https://docs.gimp.
org/2.8/en/plug-in-convmatrix.html.

Goldsborough, Peter (2016). “A Tour of TensorFlow”.
In: CoRR abs/1610.01178. arXiv: 1610.01178. url:
http://arxiv.org/abs/1610.01178.

Gu, Jiuxiang et al. (2018). “Recent advances in con-
volutional neural networks”. In: Pattern Recognition
77, pp. 354–377.

Kingma, Diederik P and Jimmy Ba (2014). “Adam:
A method for stochastic optimization”. In: arXiv
preprint arXiv:1412.6980.

Lecun, Y. et al. (1998). “Gradient-based learning ap-
plied to document recognition”. In: Proceedings of
the IEEE 86.11, pp. 2278–2324. issn: 0018-9219.
doi: 10.1109/5.726791.

Lin, Tsung-Yi et al. (2017). “Focal loss for dense object
detection”. In: Proceedings of the IEEE international
conference on computer vision, pp. 2980–2988.

Loss Functions. url: https : / / ml - cheatsheet .
readthedocs.io/en/latest/loss_functions.
html.

Nair, Vinod and Geoffrey E. Hinton (2010). “Recti-
fied Linear Units Improve Restricted Boltzmann Ma-
chines”. In: Proceedings of the 27th International Con-
ference on International Conference on Machine Learn-
ing. ICML’10. Haifa, Israel: Omnipress, pp. 807–814.
isbn: 978-1-60558-907-7. url: http://dl.acm.
org/citation.cfm?id=3104322.3104425.

Nielsen, Michael A. (2018). Neural Networks
and Deep Learning. misc. url: http : / /
neuralnetworksanddeeplearning.com/.

Rubikscode (2018). Introduction to Convolutional Neu-
ral Networks. url: https : / / rubikscode . net /
2018/02/26/introduction-to-convolutional-
neural-networks/.

Scherer, Dominik, Andreas Müller, and Sven Behnke
(2010). “Evaluation of pooling operations in con-
volutional architectures for object recognition”. In:
International conference on artificial neural networks.
Springer, pp. 92–101.

SIE (2005). EyeToy Play 3.

Sigmoid function (2019). url: https : / / en .
wikipedia . org / wiki / Sigmoid _ function #
/media/File:Logistic-curve.svg.

Smith, Steven W. (1997). The Scientist and Engi-
neer’s Guide to Digital Signal Processing. San Diego,
CA, USA: California Technical Publishing. isbn: 0-
9660176-3-3.

Srivastava, Nitish et al. (2014). “Dropout: A Sim-
ple Way to Prevent Neural Networks from Overfit-
ting”. In: Journal of Machine Learning Research 15,
pp. 1929–1958. url: http://jmlr.org/papers/
v15/srivastava14a.html.

Page 7 of 7


