
A Bi-Directional Path Tracing
system for rendering high quality
computer images and scenes

Nathan Butt
Department of Computer
Science and Creative
Technology
University of the West of
England
Coldharbour Lane, Bristol
Nathan2.Butt@live.uwe.ac.uk
Student ID. 16013327

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author must be honoured. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from the author.
UWE Games Technology , 12/2018, Bristol, UK.

Figure 1: An example of PBR based rendering technique
(Image curtosy of the Blender Foundation.) [2]

Abstract
Physically Based rendering defines a series of techniques
which are designed to result in renders that emulate the
environment as closely as possible. One class of PBR is
global illumination algorithms which are derived from the
ray-tracing family of algorithms. This report seeks to
illustrate the research that has been conducted into
implementations of one of the most advanced approaches
to GI, that being Bi-Directional Path Tracing, in order to
consider what steps will need to be taken to perform such
an implementation.

Author Keywords
Rendering; Ray-tracing; Light Transport; Monte-Carlo
Rendering;

Introduction
Bi-Directional path-tracing (BDPT) is a global
illumination algorithm which combines sampled paths
generated from both the viewer and the light source in
order to estimate the radiance of all points in the scene.
BDPT was first proposed by Eric LaFortune in 1994 [5]
and was then further iterated upon by Eric Veach in 1997
[11] via the proposition of new sampling methods. BDPT
and other raytracing algorithms are defined primarily by
their approach to computing light transport.

Whilst all methods share common features, BDPT utilises
Monte Carlo sampling in order to simulate the light
transport within a 3D space which in turn allow for the
production of high-quality images. This report will be
reviewing research centred on the implementation of a
BDPT rendering system and how this method differs from
pre-existing raytracing implementations. The report will
also detail information about how such a system can be
implemented. With the intended goal of said research to
provide the theory necessary to create a correct
implementation.

Research Methods
The primary goal of this project is to create an
implementation of BDPT that is capable of rendering
arbitrary 3D scenes. These scenes would be comprised of
different 3D models with different forms of light sources
and surfaces. Therefore the research will be focused on
answering several key research questions. These are:

1. What are the various methods that are utilised for
light transport simulation?

2. What are the fundamental elements for image
synthesis common to all algorithms?

3. What are the best algorithms for building the
system according to a set specification?

4. How can these be implemented efficiently in a
productive manner?

For this research, a selection of secondary research sources
have been consulted involving both established journals
such as ACM SIGGRAPH along with various books on the
topic such as Physically Based Rendering From Theory to
Implementation (PBRT). In addition to this, progress will
be made on the implementation of algorithms arising from
the research conducted both during the implementation
and as part of the researched engaged for this report.

Research and Implementation
Basic Image Synthesis
A BDPT system is a ray-tracing based rendering method,
so several collections of algorithms are required in order to
resolve issues regarding image synthesis that is the
creation of images within a 3D scene. This function is
fulfilled by intersection algorithms which test for
intersection with primitives.

Considering the systems need to be capable of rendering
3D models and objects, it is required that the system is
capable of intersecting triangles as well as primitives such
as boxes for rendering optimisation.

Intersection
In computer graphics Rays are defined by this function.
Rays have an Origin (O) and a normalised direction (D)
with magnitude (t)[7, 3].

R(t) = O + tD (1)

Intersection of triangles can be performed utilising the
Moller-Trumbore Algorithm [7]. This algorithm utilises
the barycentric coordinate system which defines points
relative to the origin triangle which when summed should
equal one.

w + u+ v = 1 (2)

The algorithm equates the definition of a point along the
ray to the definition of a barycentric point on a triangle.
Allowing this equation to be derived which is then solved
utilising scalier triple product for the derived set of
matrices, providing all barycentric coordinates (u, v, w) as
well as the magnitude of the ray.

Whilst a geometric solution could have been considered,
this method was comparatively simple to implement whilst
achieving similar results [7]. Hence, this algorithm will be
used to perform intersections with objects in the scene.

Acceleration
Another consideration which is virtually compulsory for a
raytracing system is a scene acceleration system as not
doing so will result in O(n) complexity for rendering
which will be problematic in the case of complex
environments [3, 9]. This is addressed via utilising a
special data structure which subdivides the space into a
grid or similar structure, allowing many redundant
intersection tests to be avoided [9].

These methods involve the creation of bounding volumes
(BV) which is a volume that encompasses an object or
collection in objects, in this case a bounding box due to
its computational simplicity. These BVs are then used to
partition the space into various segments reducing the
number of intersection tests per frame [10]. These objects

form part of a BV-hierarchy (BVH) which in turn can be
organised utilising various tree structures [1]. It is these
hierarchies which are then recursively traversed with a
node being inspected if an intersection is detected.

Figure 2: A visualisation of a hierarchy of BVs of unequal
subdivision. [10]

Whilst these bounding volumes could be any form of 3D
primitive, boxes are most often utilised outside of tight
fitting boxes. For the boxes, Ray-AABB intersection tests
are utilised to check for collisions and these are performed
utilising the slab test. This is a straightforward comparison
test which prevents excessive overhead in the system.

b o o l i s I n t e r s e c t i n g (Vector3 p0 , Vector3 p1 , Ray r a y)
{

Vector3 t0 = (p0 − r a y O r i g i n) ∗ Ray . i n v D i r ;
Vector3 t1 = (p1 − r a y O r i g i n) ∗ Ray . i n v D i r ;
Vector3 minVector = min (t0 , t1)
Vector3 maxVector = max (t0 , t1)

r e t u r n msximumComponent (minVector)
<= minimumComponent (maxVector)
}

Figure 3: The simple SIMD slab test implementation [6]

Octrees and BSP trees however whilst effective do not
guarantee the most efficient splits, as these algorithms
partition there spaces equally. Therefore, tailoring the
BVH to the space is often the best approach. This is done
via utilising Surface Area Heuristic (SAH) [9].

Cs = tt + (PL

NL∑
i=1

ti(li)) + (PR

NR∑
i=1

ti(ri)) (3)

SAH utilises geometric probability in order to perform
splits which reduce rendering costs by determining which
split parallel to a select axis results in a lower test cost.

This produces a BVH which is tailored for the space in an
optimised way partitioning away empty space as well as
reducing the field of triangles to test. The result is a
significant reduction in the count of rendering tests which
in turn reduces rendering times.

Light Transport
This property deals with how a rendering model
determines the radiance within a scene and the
propagation of light within a scene. Path-tracing models
such as BDPT account for indirect sources of light rather
than direct sources of light such as the case in recursive
raytracing. Hence the reason these are classed as Global
illumination algorithms.

These models resolve the problem of illumination via the
application of what is known as the rendering equation
which is based upon modelling radiosity [4]. This equation
defines radiance at a point on a surface in a 3D scene.

Figure 4: An illustration of the rendering equation in
differential solid angle form [8]

Lo(x, ωo) = Le(x, ωo) +

∫
Ω

Li(x, ωi)fr(x, ωo, ωi) cos θdωi

(4)

This Statement: fr(x, ωo, ωi)

Represents the BRDF or Bi-Reflectance Distribution
function which describes the behaviour of light upon
contact with a surface. [1]

Initially however this equation is expressed with the
integral being expressed in the form of a solid angle.
However, path-tracing utilises a different form of the
equation where radiance is expressed in terms integrating
over surface area as seen below [4, 11]:

Figure 5: An illustration of the rendering equation. As you
can see the base form integrates over the union of surface
areas in the scene. [11]

Lo(x′ → x′′) = Le(x
′ → x′′)

+

∫
S

Li(x→ x′)fr(x→ x′ → x′′)G(x↔ x′)dA(x) (5)

This is known as the 3-point form of the rendering
equation and it encompasses all surfaces in the scene with
(S) representing a union of all surfaces/polygons in the
scene. This Equation contains an additional term called
the geometry term which is used to convert the
differential solid angle to a differential surface area. This
term is partially resolved via a shadow ray represented
here using the Visibility function.

G(x↔ x′) = V (x↔ x′)
cos θ cos θ′′

||x− x′′||2
(6)

[11]

In order to produce an image, this equation would then be
solved via the utilisation of Monte-Carlo sampling for the
derived area form of the equation.

BDPT and Path Integral
Traditionally, this problem would be resolved in
path-tracing by applying an unweighted Monte-Carlo
solution. However as was pointed out by LaFortune and
later by Veach, said methods do not produce perfectly
ideal results. According to LaFortune this was largely a
result of the fact that present algorithms were not able to
consider both eye points and light sources equally [5, 11].

The aspect of the problem that BDPT seeks to resolve
which was first proposed by Lafortune and later enhanced
by Veach. This method involves tracing paths from both
the light source and the camera (sometimes referred to as
eye). Each vertex on both paths are connected to all
other vertices on the other path via shadow rays in order
to efficiently compute a wide range of lighting effects.

Figure 6: An illustration of how paths between vertex surfaces
are generated in BDPT [5]

However, from this its possible to derive a new integral for
the light path between the eye and the light source. This
is known as the path integral which is defined as follows:

I =

∫
Ωk

f(x̄)dµ (7)

where

S =

∞⋃
i=1

Ωk (8)

for all paths of a finite length [11].

This was derived by Veach and integrates over all possible
finite length paths (represented by Ωk) that could connect
a light source to a camera. This integral is comprised of a
path function and a product measure. [11]

The path function is a derived form of the rendering
equation which takes a set of paths between several points
of length k. This path function is derived from the
differential surface area form of the rendering equation
and accounts for all paths.

f(x̄) = Le(x0 → x1)G(x0 ↔ x1)

(

L∏
i=1

fr(xi−1 → xi → xi+1)G(xi ↔ xi+1))∗

We(xl−1, xl) (9)

Where x̄ represents the set of paths generated on a
particular point connecting both the light source and the
view source.

x̄ = x0, x1, x2...xk

Hence the problem is now only comprised of a single
integral which can then be evaluated to give the radiance
of the surface point. This integral whilst too complex to

be solved deterministically, can be solved utilising
Monte-Carlo sampling in a similar manner to pre-existing
methods such as path-tracing.

Sampling
Monte-Carlo integration is a numerical method derived
from statistics which can be used to solve a variety of
complex integrals making it very useful in computing
radiance. In Monte-Carlo the expected value of an
integral is computed as the following:

E[I] =
1

N

N∑
i=1

f(Xi)

pdf(Xi)
(10)

[9]

This method involves computing the average value of a
large number of random samples of the path integral
divided by the probability density function (pdf) in area
measure of generating that path. The result is an
estimator whose values will equal the correct radiance
values on the camera as the number of random samples
tends to infinity.

It is desirable that an estimator have the lowest variance
possible. Variance is the degree of an estimators error
from the true value of an integral. Therefore a lower
variance is desired as this results in a higher quality image.

In order to reduce variance when sampling there are
several strategies that can be used. In path-tracing and
related methods a technique called importance sampling is
used. Importance sampling exploits the structure of the
Monte-Carlo estimator and makes some modifications to
the pdf function. Importance sampling simply exploits the

notion that if the pdf of a value x is proportional to the
path function or in essence:

pdf(x) ∝ f(x)

pdf(x) = cf(x)

As seen here this results in a constant value (c) across all
samples, hence the variance is zero or close to zero [9].
Importance sampling is reflected in the BRDF/shading
model for a surface where pdfs are proportional to the
BRDF of a surface. This results in a rough approximation
of the sampling behaviour for the said point on a surface.

Lafortune utilised this concept in his BDPT
implementation where pdfs for path surfaces account for
the BRDF of the surface [5].

However, one significant limitation with this method is
that the algorithm only considers single sampling
strategies. As Veach points out in his thesis, the different
strategies used can result in different sampling outcomes,
each of which has some degree of variance causing noise.

This is resolved by Veach via the utilisation of an
algorithm called Multiple Importance Sampling which
simply considers importance samples from all possible
sampling strategies and incorporates them into a
weighting function [11].

E[I] =
1

N

N∑
i=1

w(Xi)f(Xi)

pdf(Xi)
(11)

This weighting function computes the weighted
contributions of the complete collection of light paths
across all sampling strategies. By weighting these multiple

samples it enables all contributions from all light sources
to be accounted for to the correct extent. This decreases
the variance in the importance sampling model resulting
in less noisy images [11].

The key to this algorithm is choosing a weighting function
which is able to ensure the lowest variance possible via
providing weighting values which ensure the lowest
elements possible. The solution that Veach proposes is
known as the balance heuristic.

W (x) =
nipi(x)

Σknkpk(x)
(12)

[11]

The balance heuristic simply accesses a balance of
probabilities between the current light path and the sum
of probabilities of all possible paths. This produces a
weight value which is then applied to the estimator,
resulting in a minimal variance estimator for a wide variety
of path integrands.

Implementation
To implement the system it requires that the two
algorithms that BDPT is derived from are implemented
first. One of these being the path-tracing algorithm which
generates light paths from the camera to the light source
connecting each surface vertex, and the second being
light-tracing which is similar to path-tracing, except paths
are generated from a light source rather than the camera.
Upon implementing these two algorithms the two key
systems along with their core components will be in place
to allow for the bi-directional path tracer to be
implemented.

In addition to this several methods are required, namely
many of the fundamental algorithms mentioned previously
that allows rays to be generated and intersection tests
with objects as well as several acceleration objects.

Conclusion
As can be seen from the research, extensive work is
needed in order to ensure that the system being created is
able to function correctly and produce the intended sets of
images. Currently the implementation of some of the
fundamental acceleration structures has already occurred.
Considering the research that has been performed the
next step of the project will be to finalise the
implementation of a Path-Tracer. Doing so will put into
place the groundwork as far as sampling methods and
probability density is concerned, allowing the light-tracing
subsystem to then be implemented.

References
[1] Akenine-Moller, T., Haines, E., and Hoffman, N.

Real-Time Rendering, 3rd ed. A. K. Peters, Ltd.,
Natick, MA, USA, 2008.

[2] Foundation, B. Cycles open source production
rendering.

[3] Glassner, A. S. An introduction to ray tracing.
Elsevier, 1989.

[4] Kajiya, J. T. The rendering equation. SIGGRAPH
Comput. Graph. 20, 4 (Aug. 1986), 143–150.

[5] Lafortune, E. P., and Willems, Y. D. Bi-directional
path tracing.

[6] Majercik, A., Crassin, C., Shirley, P., and McGuire,
M. A ray-box intersection algorithm and efficient
dynamic voxel rendering. Journal of Computer
Graphics Techniques (JCGT) 7, 3 (September 2018),
66–81.

[7] Möller, T., and Trumbore, B. Fast, minimum storage
ray/triangle intersection. In ACM SIGGRAPH 2005
Courses, ACM (2005), 7.

[8] N/A. Rendering equation, Apr 2018.
[9] Pharr, M., and Humphreys, G. Physically Based

Rendering: From Theory to Implementation (The

Interactive 3d Technology Series). Morgan
Kaufmann, 2004.

[10] Rubin, S. M., and Whitted, T. A 3-dimensional
representation for fast rendering of complex scenes.
SIGGRAPH Comput. Graph. 14, 3 (July 1980),

110–116.
[11] Veach, E. Robust monte carlo methods for light

transport simulation. PhD thesis, Stanford
University, 1997.

	Introduction
	Research Methods
	Research and Implementation
	Basic Image Synthesis
	Intersection
	Acceleration

	Light Transport
	BDPT and Path Integral
	Sampling

	Implementation
	Conclusion
	References

