
A Bi-Directional Path Tracing
system for rendering high quality
computer images and scenes

Nathan Butt
Department of Computer
Science and Creative
Technology
University of the West of
England
Coldharbour Lane, Bristol
Nathan2.Butt@live.uwe.ac.uk
Student ID. 16013327

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author must be honoured. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from the author.
UWE Games Technology , 12/2018, Bristol, UK.

Figure 1: A sample image rendered using T-racer

Abstract
Physically Based Rendering (PBR) is a family of rendering
methods built around the concept of emulating the
environment as closely as possible. This approach has
been a mainstay of many offline and real-time renders in
recent years such as Solid Angles Arnold and Unreal
Engine 4. Global illumination (GI) is a class of algorithms
that is used to achieve PBR via the simulation of the
propagation of indirect light throughout the scene, one

such algorithm that accomplishes this is Bi-Directional
path tracing (BDPT) which is used commonly in films in
order to achieve photorealism. This report will detail the
implementation of a Bi-Directional path tracer, evaluating
the effectiveness of the algorithm in both efficiency and
photorealism.

Author Keywords
Rendering; Ray-tracing; Light Transport; Monte-Carlo
Rendering;

Summery
This project is a rendering system which is capable of
rendering an arbitrary 3D scene using one of three
ray-tracing based methods, these being path-tracing, light
tracing and bi-directional path tracing. Input is taken in
the form of a JSON file along with supervising assets such
as 3D models and textures. Once loaded the program
then continuously renders the image, progressively taking
more samples of the scene until the image is in an
acceptable state. These images can be saved out to either
a TGA or FPM (Floating point format) file.

Biography
I am a student in games technology with a particular
interest in rendering system and advanced rendering
techniques. Considering the direction of travel regarding
said technologies its important to gain an understanding
of how it works. Therefore I intend on using this project
in order to gain a wider knowledge of advanced rendering
pipelines as well as gain a baseline understanding of
contemporary rendering methods.

Implementation Links
GitHub Link: https://github.com/n86-64/CTP-T-racer/

Introduction
The primary objective was to implement Bi-Directional
Path tracing (BDPT) with a rendering system that would
allow the users to import and render custom 3D scenes
with any form of 3D models. This renderer would support
three fundamental materials, Lambertian diffuse, glass
and perfect Fresnel mirror. In addition to BDPT the
renderer should also be capable of both rendering using
path tracing (PT) and a related algorithm called
light-tracing (LT).

BDPT is an unbiased Monte-Carlo raytracing algorithm
that is designed to model the propagation of light around
a scene. Currently this algorithm is available in
mainstream renderers such as Pixars Renderman [1], and
is used to achieve photorealistic images. PT has recently
started to gain adoption in the gaming industry with the
release of real-time path-tracing pipelines such as DXR
(Direct X Raytracing) [3] along with the new RTX
graphics cards by NVIDIA [4]. This is a direct result of
the desire of all aspects of the gaming industry to make
their games more photorealistic. As such its important to
gain an understanding of these algorithms as they are
fairly rapidly becoming the basis of many modern game
engines. Additionally, algorithms such as ambient
occlusion are approximations of the methods employed
here, hence understanding these GI algorithms also
extends to gaining knowledge regarding contemporary
methods, essential for modern game engine development.

This project is comprised of a singular application called
T-racer which attempts to meet the objectives specified.

This application implements a rudimentary rendering
pipeline where scenes in the form of a JSON based files
are provided. These scenes configure the renderer
properties such as scene name, resolution etc. along with

providing details of the scenes contents. The application
is able to render the specified scene using one of the three
rendering methods specified with support for a range of
physically based surface materials. This process involves
taking continuous samples of the scene until the
application terminates. These can either be rendered to a
window or saved out to disk in the form of TGA or FPM
file. This report will detail the various aspects of the
render pipeline and critically evaluate said decisions.

Render System
The renderer was implemented utilising a linear pipeline
architecture. This rendering pipeline can be broken down
into four primary stages, these being Input, Assembler,
Integrator and Display. In addition, there also exists two
primary buffers which the pipeline interacts with
throughout the process of the render. A scene buffer
which contains information on the primitives stored within
a scene and a frame buffer where the result of a render is
written to for display.

Figure 2: A sample image rendered using T-racer

When the implementation is started and a scene file is
parsed, the pipeline is initiated with the input stage where
all data is read into memory from the scene file. In

addition, many aspects of the renderer such as the display
type and display resolution are acquired from the file
allowing the framebuffer and pipeline to be setup. This
leads to the assembler stage where the scene is prepared
for rendering via the construction of acceleration
structures at which point the integrator stage is started
where the image is rendered into a framebuffer using one
of three rendering methods. The final stage involves
writing the framebuffer to a display of some description.

This approach of a singular pipeline state is commonly
used for all types of renderers due to its flexibility in
configuration and simplicity of development. Examples of
this approach include the OpenGL and DirectX [6] [13]
renderers. This proved itself to be the case when
designing the implementation as this approach allowed
made the process simple with little coupling in the final
implementation, reducing potential for errors.

This was implemented in a C++ application which was
structured around a central object which performed the
various pipeline stages. This was fulfilled by the
T-racer-Renderer object with a collection of helper objects
providing the various operations needed for the pipeline.

Operations
Helper Functions and core structures
Implementing these rendering techniques required a
collection of additional mathematical structures such as
Ray and Matrix objects for operations such as intersection
testing, requiring use of a math library. This project
utilised a custom math library written around the needs of
the renderer specifically. This included several data
structures defining Vectors, Matracies, Ray and Colour
objects with a selection of appropriate operations.

An important factor when designing this library as well as

considering a library was efficiency given the frequent use
of these structures. An inefficient library could
unnessecery lengthen render times and distort the
effectiveness of these algorithms. Therefore, optimisations
would be needed resulting in the adoption of SIMD or
Single Instruction Multiple Data, with the classes in turn
being designed in order to take advantage of this
optimisation. This parallelised many of the operations in
the math library resulting in significant performance
improvements regarding mathematical operations,
assisting in decreasing render times.

To perform Monte-Carlo integration on the rendering
equation, a collection of paths are required to be
evaluated. This is addressed via the T-racer-Path-Vertex
class which stores light path and surface information.
Making the data accessible for the integrators to perform.

Primitives
Primitives are shapes which comprise objects in the
image. In addition to triangles, there are efficient
intersection methods for other primitive shapes such as
quads which were considered [10]. Although, it was found
these primitives lack the flexibility of triangles which given
in high enough number allow for spherical and non-convex
objects to be rendered easily. Additionally, triangular
primitives reduce the need to implement additional model
primitives such as spheres as well as containing simple
operations for the calculation of properties such as surface
area which is essential for methods later on. Indeed the
use of triangular primitives simplified the implementation
in both scene construction as it unified all mesh loading
and processing as well as reducing the number of
mathematical operations needed for surface evaluation.

Intersection of primitives was handled using a slightly
modified version of the Moller-Trumbore intersection

algorithm [9]. This modification implemented the same
core principles of the original algorithm but approached
the calculation slightly differently with operations such as
the determinant being calculated via a cross of edge
vectors instead of a cross of ray direction and an edge
vector.

This was a result of implementation issues regarding the
default approach where clear intersections were not
detected despite the algorithms implementation matching
that of the original implementation. Given constraints this
new method was adopted from an existing renderer and
was successful in resolving these missing detection issues.

Acceleration
Acceleration is key to render efficiently via the elimination
of primitives which will not see any chance of an
intersection with rays being fired into the scene. This was
addressed with a Bounding Volume Hierarchy which is
constructed using the surface area heuristic implemented
based on the research performed [11].

BVH is represented as a hierarchical tree of nodes stored
within a tree object. Each node possessing a bounding
box representing the portion of space and a collection of
indices representing the polygons within that space. These
trees are then traversed recursively until a leaf node or
node without and child nodes is identified, causing the
polygons to be checked, with the closest intersection
being recorded for use in the wider renderer.

Figure 3: An illustration of the BVH concept. [12]

Upon implementation, this approach was highly effective
in the renderer at decreasing the number of primitive
intersection tests needed, reflecting the theoretical
potential of the algorithm. These efficiencies were further
improved with the slab test [8] algorithm whose
implementation was based on that found in research. This
not only was simple to implement but also utilised SIMD
resulting in negligible impact on performance.

Figure 4: An implementation of the slab test intersection [8]

However, this algorithm has a poor time complexity
during the construction process with complex models
comprised of a large number of polygons often taking a
significant amount of time to partition. Increasing render
times and preventing real-time scene adjustments. In
response, an addition was made to the BVH
implementation to be serialisable. This allowed

pre-computed BVHs for identical scenes to be reloaded
rather than recomputed, significantly reducing render
times whilst not complicating the structure.

Whilst serialisation prevents duplicate work it ultimately
does not improve generative efficiency. Therefore possible
additions include threading for initial construction,
allowing nodes to be constructed in parallel significantly
reducing construction time.

Display
All colour data relating to a render is outputted to a
display object which represents the framebuffer. Displays
are an abstract object which represents either a window or
an output file with common properties such as the
framebuffer object itself. Allowing for easy adjustment of
output destination whilst creating a simple interface for
the renderer to interact with.

Figure 5: The system structure for displays in the renderer.

Three display objects were implemented, the first being a
window display where contents are displayed to a window
and two file displays which write the framebuffer to a
TGA and PFM formats respectively. The window was
implemented using the SFML library [2] which provided a
simple interface for drawing to a window, removing the
need to implement custom window and render.

One issue with the window display is the medium of
display where colours may require adjustment. This was
addressed with a tone mapping algorithm which adjusts
the colour values for a particular display. The renderer
utilises a simple algorithm where colour values were raised
to an exponent.

f(x) = Cxy
1/2.2 (1)

Whilst this approach produced acceptable results, with
utilisation of a GPU it could be possible to consider filmic
tone mapping methods [5] which whilst more advanced
produce higher quality results. Additionally, it would result
in modest performance improvements with the system
leveraging GPU parallelism.

Camera
The cameras is the eye into the scene, meaning rays have
to be generated from each pixel of the camera in order to
render an image. This is done by computing points on the
image plane which can then be normalised in order to
determine the direction of the ray. This creates a
perspective projection into the scene.

Figure 6: Illustration of camera ray generation. [7]

Initially, ray generation on the camera was performed
using a series of matrix multiplications which translated
screen space points to camera space and finally to world
space. However, this proved to be complex and
problematic resulting in a faulty camera that projected
correctly but did not account for the direction of the
camera.

Instead, an alternate model was adopted based on the
work of Peter Shirley. This camera model did not utilise
matrices and instead computed local transform vectors
which is then used to derive the point on the image plane.
This proved to be vastly more effective and fixed many
anomalies with the camera [14]. Additionally, this method
simplified implementation of both camera importance and
world to screen projection which are essential methods for
use in the light tracer.

Lights
Lights are sources of light energy which radiates into the
scene illuminating surfaces. There are several types of
lights, these include

• Point Lights: Singular points of emission in all
directions.

• Spot Lights: Emission from a concentrated point to
an area of the scene.

• Area Lights Emission across a specified surface
area.

• Directional Lights Lighting from the whole
environment from a specified direction.

All lights whilst possessing different behaviour must be
capable of performing the same range of sampling and
direct connection operations in order for the integrators to
evaluate correctly. Therefore, lights in the renderer are
expressed in the form of a single abstract class
T-racer-Light-Base. This simplifies interaction with the
renderer whilst ensuring the correct operations are
performed.

The renderer implements both a Point light and an Area
light type with the behaviour of the core functions
designed around the properties of the lights. These lights
implement functions to sample both points, directions and
to evaluate direct light connections. Implementations of
these lights were based on implementations in physically
based rendering [10].

Point lights are conceptually simple and due to the
singularity of light, these lights do not involve any use of
random sampling as there is only one possible connection
for any surface point. Additionally, as these lights emit
from a singularity, these lights possess no surface normal
which is an issue for the integrators.

The direction sampling function simply returns the
direction towards the light position with the point

sampling simply returning the position of the light. In
addition to their functions, the path vertex possesses a
property stating whether or not this path is derived from a
point light. This allows the special case to be handled
adequately without introducing any potential error. These
sampling functions also because of the singular nature of
the light connection return a probability density function
of 1.

Area lights in principle can be comprised of any shape,
however in order to reduce complexity area lights are
comprised of collections of triangles which the individual
triangle in turn being sampled when required. Similar to
the reasoning behind the core render primitives, this
allowed for flexibility in the creation of various lights.
Whilst it required implementation changes, these were
quite simple to make and ensured that additional shape
primitives would not be needed.

Points are sampled via the use of triangle sampling which
is a simple algorithm which retrieves a point using
barycentric coordinates. Given light can emit in any
direction perpendicular to the area light surface, its
appropriate to utilise cosine hemisphere sampling [15] [10]
which upon sampling a unit disks projects onto a sphere
allowing the direction to be retrieved.

Materials
Materials represent the BRDF quantity that is evaluated
in the rendering equation with each surface being assigned
a material. As the goal is photorealistic imagery these
BRDFs have been modelled on well-established physically
based functions, as these adhere to some basic principles
regarding conservation of energy [10].

The BRDF in an integrator needs to both define a
destination direction to a surface point and evaluate the

current surface point in order to account for contribution
to radiance at the intersected surface point /citepbrt.
This is reflected in the Evaluate and Sample Functions.
These functions both evaluate the return colour of a
surface and the direction of the light ray determining the
next point to be evaluated. Materials also evaluate the
probability density of a surface which is used to weight the
surface contribution to the light path. These functions are
modelled on the principles of importance sampling as
stated in the research. The probability density of a surface
is dependent on the BRDF model, meaning it needs to be
evaluated during sampling.

Materials are implemented using the T-racer-Material
class which similar to the lights is abstract due to the
variety of different possible behaviours, allowing material
selection to be flexible for the surface in question.

Figure 7: A visual representation of the structure of the
material system.

Three materials were supported whose algorithms were
derived from further research into physically based BRDF.
The first is a Lambertian surface where light is uniformly
distributed in all directions perpendicular to the surface.
Evaluation and Sampling was a simple process only
involving a limited collection of calculations for each.

C(Xi) = ProjToUnitDisk(ξ1, ξ2)

C(Xi).Z =
√
1− ((C(Xi).X)2 ∗ (C(Xi).Y)2)

(2)

pdf(xi) =
cos θ

π
where

cos θ = | ~N · ωi|

(3)

Figure 8: A equation and code snippet of the material
evaluation

The other materials are a mirror and a glass material
which are classified as Fresnel materials meaning they are
capable of refraction and reflection. Fresnel materials
caused issues with the implementation regarding object
illumination. This was the result of not accounting for the
Dirac delta distribution [10] when calculating direct
lighting. The function derivative means that direct
lighting should not be evaluated. This required a slight
adjustment in the light path structure and the integrator
object which was simple to implement and resolved the
intensity issue.

Figure 9: An example glass material

Figure 10: An example mirror material

In addition, the primitive also calculates a transformation
matrix called an orthonormal basis which allows points in
world space to be transformed to the primitives local
space with a Z-up value. This is calculated using the
Gram-Schmidt method [10]. This was an effective
addition, as it allows for material sampling and
evaluations to be greatly simplified due to the local frame
of reference. This was greatly exemplified with Fresnel
surfaces where the transform allows the BRDF to be
simplified to the stated sign inversion rather than having
to evaluate the Fresnel reflection equation which would
have been more computationally expensive. However, this
method is prone to error and can be complex to debug an
implement. This was also the case with the mirror
material where reflections were not transformed correctly
due to a failure to transpose the matrix.

Integrators
Integrators are the core component of the renderer that
performs the Monte-Carlo integration in order to evaluate
the rendering equation for the given surface points. Each
integrator initially constructs a light path with the BDPT
integrator constructing two light paths from both the
camera and the light source. A PT integrator constructs a
light path from the camera with the LT constructing
paths from a sampled point on the light source.

All light paths are integrated via recursive evaluation of
the indirect portions of the rendering equation. This is a
recursive process that terminates upon either the miss of a
primitive or the failure of the Russian roulette which is
used instead of fixed path termination.

Initially naive Russian roulette was implemented, however
this failed to account for the luminance of the light path.
Further research led to the discovery of luminance
weighted Russian roulette which accounts for the
contribution of the light path. This makes the termination
more importance driven resulting in less noise in the final
image.

Upon the construction of a light path these are then
evaluated by the respective integration methods. This
includes evaluation of direct lighting where light paths are
connected to the light source in the case of a PT or the
camera in the case of a LT. These direct lighting
connections were evaluated based on prior research.

Figure 11: Render result of a light tracer

Figure 12: Render result of a path tracer

Figure 13: Render result of a bi directional path tracer.

Results and Evaluation
BDPT was implemented semi-successfully, however this
implementation was limited via a number of issues
regarding material behaviours and integrator behaviour.
This was fairly obvious with the evaluation of glass where
the caustic produced and the glass material were too dark.
However, other than this issue the algorithm performed as
expected.

In comparison to LT and PT integrators, BDPT is a
combination of some of the strength of both methods
which helps to resolve anomalies between the two
methods. This is best exhibited in glass where an LT
integrator is capable of rendering a caustic burn into the
floor, however its unable to render the glass in the sphere
due to material properties, and the PT is able to render
the glass but is unable to render a caustic precisely.
BDPT via the combination and connection of both paths
eliminates this problem.

In addition BDPT has a faster convergence rate as shown
in experiments where the image is significantly as
illustrated below. Although, as theory would suggest this
came at a computational cost due to the need to
contribute two paths rather than one.

Figure 14: A 5 sample path trace render

Figure 15: A 5 sample bi-directional path trace render

Overall, whilst BDPT has major advantages regarding
evaluation of several materials and convergence, its
computational expense can significantly increase render
times. For many use cases, the use of path tracing would
be more appropriate as it would be faster to evaluate.
This is true especially for modern game engines looking to
utilise pure GI algorithms.

Conclusions
In conclusion, the system did meet some of the core
objectives and did demonstrate BDPT as well as PT and
LT integrators. However the quality of the images whilst
approaching photorealistic, was not to the standard that
was expected at the end of the project. This is the result
of issues relating to the implementation of the integrators
as well as possible bugs with some of the materials. There
is also noticeable pockets of noise and artefacts in the
image resulting from a lack of additional importance
methods. Additionally, whilst the application is somewhat
configurable with scene files, it is limited in its
functionality regarding user interface making it difficult for
general use.

However, despite these flaws the implementation of this
pipeline has served as a strong means of understanding
the differences between various GI algorithms as well as
the various helper processes that allow these algorithms to

function. The experimentation of each of the methods
provides useful information when considering application
in the various industries that utilise computer graphics.
Additionally, the flexible design of the system allows for
easy modification meaning many of the issues can be
addressed in the long term development of the system.

In the long term a number of modifications could be made
in order to improve the quality of the system and its
resulting renders. Firstly, the optimisation of integrators
and the fixing of existing rendering bugs which would
improve image quality and performance of the renderer.
This could also be supervised with the addition of
methods such as multiple importance sampling which
would further reduce noise and artefacts in the image.

Appendix
Appendix A. Project Log
Project log can be found attached to this document.

References
[1] Pxrvcm.
[2] Sfml.
[3] Announcing microsoft directx raytracing!, Mar 2019.
[4] Nvidia rtx platform, Feb 2019.
[5] Dille, S., Fuhrmann, A., and Fischer, G. Real-time

tone mapping - an evaluation of color-accurate
methods for luminance compression (09 2016).

[6] GrantMeStrength. Graphics pipeline - windows
applications, May 2018.

[7] Henrick. Ray tracing diagram. Apr 2008.
[8] Majercik, A., Crassin, C., Shirley, P., and McGuire,

M. A ray-box intersection algorithm and efficient
dynamic voxel rendering. Journal of Computer
Graphics Techniques (JCGT) 7, 3 (September 2018),
66–81.

[9] Möller, T., and Trumbore, B. Fast, minimum storage
ray/triangle intersection. In ACM SIGGRAPH 2005
Courses, ACM (2005), 7.

[10] Pharr, M., and Humphreys, G. Physically Based
Rendering: From Theory to Implementation (The
Interactive 3d Technology Series). Morgan
Kaufmann, 2004.

[11] Rubin, S. M., and Whitted, T. A 3-dimensional
representation for fast rendering of complex scenes.
SIGGRAPH Comput. Graph. 14, 3 (July 1980),
110–116.

[12] Schreiberx. An example of a bounding volume
hierarchy using rectangles as bounding volumes. Dec
2011.

[13] Sellers, G., Wright, R. S., and Haemel, N. OpenGL
Superbible: Comprehensive Tutorial and Reference,
7th ed. Addison-Wesley Professional, 2015.

[14] Shirley, P. Ray tracing in one weekend.
[15] Shirley, P., and Chiu, K. A low distortion map

between disk and square. Journal of graphics tools 2,
3 (1997), 45–52.

	Summery
	Biography
	Implementation Links
	Introduction
	Render System
	Operations
	Helper Functions and core structures
	Primitives
	Acceleration
	Display
	Camera
	Lights
	Materials
	Integrators

	Results and Evaluation
	Conclusions
	Appendix
	Appendix A. Project Log

	References

